Infinite Mixtures of Infinite Factor Analysers
نویسندگان
چکیده
منابع مشابه
The Infinite Mixture of Infinite Gaussian Mixtures
Dirichlet process mixture of Gaussians (DPMG) has been used in the literature for clustering and density estimation problems. However, many real-world data exhibit cluster distributions that cannot be captured by a single Gaussian. Modeling such data sets by DPMG creates several extraneous clusters even when clusters are relatively well-defined. Herein, we present the infinite mixture of infini...
متن کاملThe Infinite Mixture of Infinite Gaussian Mixtures
Dirichlet process mixture of Gaussians (DPMG) has been used in the literature for clustering and density estimation problems. However, many real-world data exhibit cluster distributions that cannot be captured by a single Gaussian. Modeling such data sets by DPMG creates several extraneous clusters even when clusters are relatively well-defined. Herein, we present the infinite mixture of infini...
متن کاملDeep Mixtures of Factor Analysers
An efficient way to learn deep density models that have many layers of latent variables is to learn one layer at a time using a model that has only one layer of latent variables. After learning each layer, samples from the posterior distributions for that layer are used as training data for learning the next layer. This approach is commonly used with Restricted Boltzmann Machines, which are und...
متن کاملExpectation propagation for infinite mixtures
This note describes a method for approximate inference in infinite models that uses deterministic Expectation Propagation instead of Monte Carlo. For infinite Gaussian mixtures, the algorithm provides cluster parameter estimates, cluster memberships, and model evidence. Model parameters, such as the expected size of the mixture, can be efficiently tuned via EM with EP as the E-step. The same ap...
متن کاملInfinite Mixtures of Gaussian Process Experts
We present an extension to the Mixture of Experts (ME) model, where the individual experts are Gaussian Process (GP) regression models. Using an input-dependent adaptation of the Dirichlet Process, we implement a gating network for an infinite number of Experts. Inference in this model may be done efficiently using a Markov Chain relying on Gibbs sampling. The model allows the effective covaria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bayesian Analysis
سال: 2020
ISSN: 1936-0975
DOI: 10.1214/19-ba1179